Title: | Quotient of Random Variables Conditioned to the Positive Quadrant |
---|---|
Description: | Computes the exact probability density function of X/Y conditioned on positive quadrant for series of bivariate distributions,for more details see Nadarajah,Song and Si (2019) <DOI:10.1080/03610926.2019.1576893>. |
Authors: | Yuancheng Si [aut, cre] , Saralees Nadarajah [aut], Xiaodong Song [ctb] |
Maintainer: | Yuancheng Si <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.2.1 |
Built: | 2024-10-29 04:30:58 UTC |
Source: | https://github.com/cran/PosRatioDist |
probability density function of quotient of Balakrishna and Shiji's bivariate exponential random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBibs_expPR(x, a, r)
dBibs_expPR(x, a, r)
x |
vector of positive quantiles. |
a |
parameter for Balakrishna and Shiji's bivariate exponential distribution |
r |
parameter for Balakrishna and Shiji's bivariate exponential distribution |
Probability density function
For ,
dBibs_expPR
gives the probability density function for quotient of Balakrishna and Shiji's bivariate exponential random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
Balakrishna, N. and Shiji, K. (2014).On a class of bivariate exponential distributions.Statistics and Probability Letters, 85, pp153-160.
x <- seq(0.1,5,0.1) y <- dBibs_expPR(x, 2, 2) plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- dBibs_expPR(x, 2, 2) plot(x,y,type = 'l')
probability density function of quotient of Bivariate cauchy random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBicauchyPR(x, a, b)
dBicauchyPR(x, a, b)
x |
single real positive scalar |
a |
parameter for bivaraite cauchy distribution |
b |
parameter for bivaraite cauchy distribution |
Probability density function
For ,
,where
and
is given by first reference paper section (2.5).
dBicauchyPR
gives the probability density function for quotient of Bivariate cauchy random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
Caginalp, C. and Caginalp, G. (2018).The quotient of normal random variables and application to asset price fat tails.Physica A—Statistical Mechanics and Its Applications, 499, pp457-471.
Louzada, F., Ara, A. and Fernandes, G. (2017).The bivariate alpha-skew-normal distribution.Communications in Statistics - Theory and Methods, 46, pp7147-7156.
Nadarajah, S. (2009).A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
Nadarajah, S. and Kotz, S. (2006).Reliability models based on bivariate exponential distributions.Probabilistic Engineering Mechanics, 21, pp338-351.
Nadarajah, S. and Kotz, S. (2007).Financial Pareto ratios.Quantitative Finance, 7, pp257-260.
x <- seq(0.1,5,0.1) y <- c() for (i in x){y=c(y,dBicauchyPR(i,1,2))} plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- c() for (i in x){y=c(y,dBicauchyPR(i,1,2))} plot(x,y,type = 'l')
probability density function of quotient of Bivariate exponential random variables resulting from weighted linear combinations conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBiexpweightedPR(x, a, b, c)
dBiexpweightedPR(x, a, b, c)
x |
vector of positive quantiles. |
a |
parameter for Bivariate exponential random variables resulting from weighted linear combinations |
b |
parameter for Bivariate exponential random variables resulting from weighted linear combinations |
c |
parameter for Bivariate exponential random variables resulting from weighted linear combinations |
Probability density function
For ,
,These correlated exponential random variables can be used to model the stress and strength components of a system, hence the quotient distribution can be used to estimate the probability of failure of the system
dBiexpweightedPR
gives the probability density function for quotient of Bivariate exponential random variables resulting from weighted linear combinations conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
Caginalp, C. and Caginalp, G. (2018).The quotient of normal random variables and application to asset price fat tails.Physica A—Statistical Mechanics and Its Applications, 499, pp457-471.
Louzada, F., Ara, A. and Fernandes, G. (2017).The bivariate alpha-skew-normal distribution.Communications in Statistics - Theory and Methods, 46, pp7147-7156.
Nadarajah, S. (2009).A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
Nadarajah, S. and Kotz, S. (2006).Reliability models based on bivariate exponential distributions.Probabilistic Engineering Mechanics, 21, pp338-351.
Nadarajah, S. and Kotz, S. (2007).Financial Pareto ratios.Quantitative Finance, 7, pp257-260.
x <- seq(0.1,5,0.1) y <- dBiexpweightedPR(x, 4, 2, 0.2) plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- dBiexpweightedPR(x, 4, 2, 0.2) plot(x,y,type = 'l')
probability density function of quotient of Bivariate Lomax random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBilomaxPR(x, a, b, c, alpha, beta, theta)
dBilomaxPR(x, a, b, c, alpha, beta, theta)
x |
single positive scalar for quotient |
a |
parameter for Bivariate lomax distribution |
b |
parameter for Bivariate lomax distribution |
c |
parameter for Bivariate lomax distribution |
alpha |
parameter for Bivariate lomax distribution |
beta |
parameter for Bivariate lomax distribution |
theta |
parameter for Bivariate lomax distribution |
Probability density function
For ,
,
,
,
where
are given by first reference paper section (2.5)
dBilomaxPR
gives the probability density function for bivariate lomax random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
probability density function of quotient of Morgenstern type bivariate exponential random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBiMG_expPR(x, a, b, alpha)
dBiMG_expPR(x, a, b, alpha)
x |
vector of positive quantiles. |
a |
parameter for Morgenstern type bivariate exponential distribution |
b |
parameter for Morgenstern type bivariate exponential distribution |
alpha |
parameter for Morgenstern type bivariate exponential distribution |
Probability density function
For ,
These correlated exponential random variables can also be used to model the stress and strength components of a system, hence the quotient distribution can be used to estimate the probability of failure of the system
dBiMG_expPR
gives the probability density function for quotient of Morgenstern type bivariate exponential random variables conditioned to the positive quadrant
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
Balakrishna, N. and Shiji, K. (2014).On a class of bivariate exponential distributions.Statistics and Probability Letters, 85, pp153-160.
x <- seq(0.1,5,0.1) y <- dBiMG_expPR(x, 3, 2, 0.5) plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- dBiMG_expPR(x, 3, 2, 0.5) plot(x,y,type = 'l')
probability density function of quotient of Bivariate normal random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBinormalPR(x, a, b, rho)
dBinormalPR(x, a, b, rho)
x |
vector of positive quantiles. |
a |
parameter |
b |
parameter |
rho |
correlation coefficient, |
Probability density function
For ,
,where
dBinormalPR
gives the probability density function for quotient of Bivariate normal random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishna, N. and Shiji, K. (2014). On a class of bivariate exponential distributions.Statistics and Probability Letters, 85, pp153-160.
Arnold, B. C. and Strauss, D. (1988).Pseudolikelihood estimation.Sankhya B , 53, pp233-243.
Caginalp, C. and Caginalp, G. (2018).The quotient of normal random variables and application to asset price fat tails.Physica A—Statistical Mechanics and Its Applications, 499, pp457-471.
Louzada, F., Ara, A. and Fernandes, G. (2017).The bivariate alpha-skew-normal distribution.Communications in Statistics - Theory and Methods, 46, pp7147-7156.
Nadarajah, S. (2009).A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
Nadarajah, S. and Kotz, S. (2006).Reliability models based on bivariate exponential distributions.Probabilistic Engineering Mechanics, 21, pp338-351.
Nadarajah, S. and Kotz, S. (2007).Financial Pareto ratios.Quantitative Finance, 7, pp257-260.
x <- seq(0.1,5,0.1) y <- dBinormalPR(x, 2, 1, 0.5) plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- dBinormalPR(x, 2, 1, 0.5) plot(x,y,type = 'l')
probability density function of quotient of Bivariate Pareto random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBiparetoPR(x)
dBiparetoPR(x)
x |
vector of positive quantiles. |
Probability density function
For ,Nadarajah (2009) used this distribution to model the proportion of droughts defined as a quotient of drought durations and non-drought durations.
dBiparetoPR
gives the probability density function for quotient of Bivariate Pareto random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Mardia, K. V. (1962).Multivariate Pareto distributions.Annals of Mathematical Statistics, 33, 1008-1015.
Nadarajah, S. (2009) A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
x <- seq(0.1,5,0.1) y <- dBiparetoPR(x) plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- dBiparetoPR(x) plot(x,y,type = 'l')
probability density function of quotient of Bivariate t random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
dBitPR(x, a, b, rho, v)
dBitPR(x, a, b, rho, v)
x |
single positive scalar,for quotient of Bivariate t random variables conditioned to the positive quadrant |
a |
parameter for Bivariate t distribution |
b |
parameter for Bivariate t distribution |
rho |
correlation coefficient, |
v |
parameter, degree of freedom of Bivariate t distribution |
Probability density function
For ,
,where
and
is given by first reference paper section (2.5).
dBitPR
gives the probability density function for quotient of Bivariate t random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.
Arnold, B. C. and Strauss, D. (1988).Pseudolikelihood estimation.Sankhya B , 53, pp233-243.
Caginalp, C. and Caginalp, G. (2018).The quotient of normal random variables and application to asset price fat tails.Physica A—Statistical Mechanics and Its Applications, 499, pp457-471.
Louzada, F., Ara, A. and Fernandes, G. (2017).The bivariate alpha-skew-normal distribution.Communications in Statistics - Theory and Methods, 46, pp7147-7156.
Nadarajah, S. (2009).A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
Nadarajah, S. and Kotz, S. (2006).Reliability models based on bivariate exponential distributions.Probabilistic Engineering Mechanics, 21, pp338-351.
Nadarajah, S. and Kotz, S. (2007).Financial Pareto ratios.Quantitative Finance, 7, pp257-260.
x <- seq(0.1,5,0.1) y <- c() for (i in x){y=c(y,dBitPR(i,1,2,0.5,2))} plot(x,y,type = 'l')
x <- seq(0.1,5,0.1) y <- c() for (i in x){y=c(y,dBitPR(i,1,2,0.5,2))} plot(x,y,type = 'l')
Computes the value of a Gaussian hypergeometric function for
and
f21hyper(a, b, c, z)
f21hyper(a, b, c, z)
a |
The parameter |
b |
The parameter |
c |
The parameter |
z |
The parameter |
The function f21hyper
complements the analysis of the 'hyper-g prior' introduced by Liang et al. (2008).
For parameter values, compare cf. https://en.wikipedia.org/wiki/Hypergeometric_function#The_series_2F1.
Invalid arguments will return an error message.
Martin Feldkircher and Stefan Zeugner
Liang F., Paulo R., Molina G., Clyde M., Berger J.(2008): Mixtures of g-priors for Bayesian variable selection. J. Am. Statist. Assoc. 103, p. 410-423
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Saralees Nadarajah and Y.Si (2020) A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”. Brazilian Journal of Probability and Statistics,34,p. 183-187.
f21hyper(30,1,20,.8) #returns about 165.8197 f21hyper(30,10,20,0) #returns one f21hyper(10,15,20,-0.1) # returns about 0.4872972
f21hyper(30,1,20,.8) #returns about 165.8197 f21hyper(30,10,20,0) #returns one f21hyper(10,15,20,-0.1) # returns about 0.4872972
Technical Lemmas for calculating quotient of random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper section 2.2.
I_1(a, b) I_2(a, b) I_3(a, b) J_1(a, b, c, alpha) J_2(a, b, c, alpha) J_3(a, b, c, alpha)
I_1(a, b) I_2(a, b) I_3(a, b) J_1(a, b, c, alpha) J_2(a, b, c, alpha) J_3(a, b, c, alpha)
a |
parameter |
b |
parameter |
c |
parameter |
alpha |
parameter |
Type I Integration
For ,where n is positive integer.
In particular,for ,we have expressions below
Type J Integration
In particular,for ,we have expressions below
I_1
gives value of Type I integration with
I_2
gives value of Type I integration with
I_3
gives value of Type I integration with
J_1
gives value of Type J integration with
J_2
gives value of Type J integration with
J_3
gives value of Type J integration with
Invalid arguments will return an error message.
Saralees Nadarajah & Yuancheng Si [email protected]
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishna, N. and Shiji, K. (2014). On a class of bivariate exponential distributions.Statistics and Probability Letters, 85, pp153-160.
Arnold, B. C. and Strauss, D. (1988).Pseudolikelihood estimation.Sankhya B , 53, pp233-243.
Caginalp, C. and Caginalp, G. (2018).The quotient of normal random variables and application to asset price fat tails.Physica A—Statistical Mechanics and Its Applications, 499, pp457-471.
Louzada, F., Ara, A. and Fernandes, G. (2017).The bivariate alpha-skew-normal distribution.Communications in Statistics - Theory and Methods, 46, pp7147-7156.
Nadarajah, S. (2009).A bivariate Pareto model for drought.Stochastic Environmental Research and Risk Assessment, 23, pp811-822.
Nadarajah, S. and Kotz, S. (2006).Reliability models based on bivariate exponential distributions.Probabilistic Engineering Mechanics, 21, pp338-351.
Nadarajah, S. and Kotz, S. (2007).Financial Pareto ratios.Quantitative Finance, 7, pp257-260.
I_1(1,2) I_2(1,2) I_3(1,2) J_1(1,2,3,3) J_2(1,2,3,3) J_3(1,2,3,3)
I_1(1,2) I_2(1,2) I_3(1,2) J_1(1,2,3,3) J_2(1,2,3,3) J_3(1,2,3,3)